Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Microbiol Spectr ; : e0419422, 2023 Mar 13.
Article in English | MEDLINE | ID: covidwho-2282132

ABSTRACT

Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developing the capacity for immune evasion and resistance to existing vaccines and drugs. To address this, development of vaccines against coronavirus disease 2019 (COVID-19) has focused on universality, strong T cell immunity, and rapid production. Synthetic peptide vaccines, which are inexpensive and quick to produce, show low toxicity, and can be selected from the conserved SARS-CoV-2 proteome, are promising candidates. In this study, we evaluated the effectiveness of a synthetic peptide cocktail containing three murine CD4+ T-cell epitopes from the SARS-CoV-2 nonspike proteome and one B-cell epitope from the Omicron BA.1 receptor-binding domain (RBD), along with aluminum phosphate (Al) adjuvant and 5' cytosine-phosphate-guanine 3' oligodeoxynucleotide (CpG-ODN) adjuvant in mice. The peptide cocktail induced good Th1-biased T-cell responses and effective neutralizing-antibody titers against the Omicron BA.1 variant. Additionally, H11-K18-hACE2 transgenic mice were fully protected against lethal challenge with the BA.1 strain, with a 100% survival rate and reduced pulmonary viral load and pathological lesions. Subcutaneous administration was found to be the superior route for synthetic peptide vaccine delivery. Our findings demonstrate the effectiveness of the peptide cocktail in mice, suggesting the feasibility of synthetic peptide vaccines for humans. IMPORTANCE Current vaccines based on production of neutralizing antibodies fail to prevent the infection and transmission of SARS-CoV-2 Omicron and its subvariants. Understanding the critical factors and avoiding the disadvantages of vaccine strategies are essential for developing a safe and effective COVID-19 vaccine, which would include a more effective and durable cellular response, minimal effects of viral mutations, rapid production against emerging variants, and good safety. Peptide-based vaccines are an excellent alternative because they are inexpensive, quick to produce, and very safe. In addition, human leukocyte antigen T-cell epitopes could be targeted at robust T-cell immunity and selected in the conserved region of the SARS-CoV-2 variants. Our study showed that a synthetic SARS-CoV-2-derived peptide cocktail induced full protection against lethal infection with Omicron BA.1 in H11-K18-hACE2 mice for the first time. This could have implications for the development of effective COVID-19 peptide vaccines for humans.

2.
World J Clin Cases ; 8(19): 4303-4310, 2020 Oct 06.
Article in English | MEDLINE | ID: covidwho-819327

ABSTRACT

In December 2019, an outbreak of unexplained pneumonia was reported in Wuhan, China. The World Health Organization officially named this disease as novel coronavirus disease 2019 (COVID-19). Liver injury was observed in patients with COVID-19, and its severity varied depending on disease severity, geographical area, and patient age. Systemic inflammatory response, immune damage, ischemia-reperfusion injury, viral direct damage, drug induce, mechanical ventilation, and underlying diseases may contribute to liver injury. Although, in most cases, mild liver dysfunction is observed, which is usually temporary and does not require special treatment, the importance of monitoring liver injury should be emphasized for doctors. The risk of COVID-19 infection of liver transplantation recipients caused more and more concerns. In this article, we aimed to review the available literature on liver injury in COVID-19 to highlight the importance of monitoring and treating liver injury in COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL